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THE t-TEST 
 
The distribution of continuous data can often be 
closely approximated by the normal distribution (1).  
For example, the distribution of Cobb angles for 
scoliotic females may be represented by a normal 
distribution with a notional mean (µ) = 15 degrees and 
a notional standard deviation (σ) = 5 degrees, and is 
shown in figure 1.  By assuming that these Cobb 
angles follow a normal distribution, we are able to 
answer questions such as ‘What is the probability that 
a randomly chosen scoliotic female has a Cobb angle 
less than 20°. 
 
Figure 1 
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This is an example of probability at an individual 
level. 

 

Often, however, we are interested in describing a 
group of individuals and hope to summarise the group 
with one statistic.  When the underlying population 
data is normally distributed, the best summary statistic 
is the mean (average). 
 
For example, suppose we were interested in the 
erythrocyte sedimentation rate (ESR) of people with 
polymyalgia rheumatica, if we were to randomly 
choose 10 people with polymyalgia rheumatica, the 
group can be described by the average of the 10 
observations. 
 
The primary objective of most studies is to use the 
sample mean to estimate the population mean.  A 
problem with this, however, is that 2 identical studies 
will not yield the same sample mean for (say) 
polymyalgia rheumatica. 
 
An analogy is coin tossing and estimating the 
probability of ‘Heads’.  Suppose the trial is to flip the 
coin 20 times and count the number of ‘Heads’.  If we 
perform the trial once, we may see 12 ‘Heads’ and 
conclude the probability of ‘Heads’ is 0.55.  If we were 
to repeat the trial again, we may see 9 ‘Heads’, and 
conclude the probability of Heads’ is 0.45.  The 
dilemma for the researcher is this: 2 identical trials, 
both trying to estimate the same thing, have produced 
different results.  Which trial has the correct result?  
Which trial has the incorrect result?  Which trial is the 
researcher to place his faith in? 
 
The questions above can never be answered in 
research.  If we knew which test provided the correct 
result, why would we need to perform a trial when the 
correct result is known?  The best we can hope for is 
that every trial yields the correct result with some 
random variability thrown in for good measure. 
 
The same holds true for means.  A random sample of 
20 people with polymyalgia rheumatica may give an 
average of 90 mm/hr, but an identical study with 
another random sample of 20 people with polymyalgia 
rheumatica may give the different average of 100 
mm/hr.  If we were to conduct 1000 studies of 
polymyalgia rheumatica, it certainly would be likely to 
get 1000 different average ESR’s. 
 
 
 

Abstract: The t distribution is a probability 
distribution similar to the Normal distribution.  It is 
commonly used to test hypotheses involving 
numerical data.  This paper provides an 
understanding of the t distribution and uses a 
musculo-skeletal example to illustrate its application. 
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An example of this is shown below in figure 2, where 
1000 (simulated) studies each randomly selected 20 
people and calculated the mean ESR.  The histogram 
shows the (simulated) distribution of the mean ESR. 
 
Figure 2  
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If we were to perform an infinite number of 
polymyalgia rheumatica studies, and we knew the 
population standard deviation (σ) of polymyalgia 
rheumatica, the Central Limit Theorem (2) tells us 
that the distribution of sample means will have a 
normal distribution. 
 
This may be seen conceptually in the following way. 
 
Suppose our study design was to sample everybody in 
the population with polymyalgia rheumatica and 
calculate the mean ESR.  If we were to repeat this 
study design an infinite number of times, the 
distribution of means would look like 
 
Figure 3 

 
since the mean for polymyalgia rheumatica would be 
the same for every study. 
 
Now suppose that our study design would be to 
randomly sample 1 person and calculate the average 
ESR for polymyalgia rheumatica.  Each study would 
simply give us the value of the ESR for each randomly 
chosen person.  If we were to repeat this study design 
an infinite number of times, the distribution of means 
would look exactly like the distribution of the raw 

data.  To simplify this, let us assume that the ESR is 
normally distributed (with mean µ and standard 
deviation σ). The distribution of means (and the raw 
data) would look like 
 
Figure 4 

 
We have now described the two extremes of study 
design.  The first study samples everybody in the 
population of interest, and the second study samples 
only one person from the population of interest.  The 2 
distributions of means are superimposed in figure 5 
below (unbroken lines).  Intuitively, then, it follows 
that the distribution of means from a sample size of 
size n (n is greater than 1, but less than the population 
size), should be somewhere between the extremes 
(broken line). 
 
Figure 5 

 
This is the distribution of sample means all calculated 
from the same sample size (n).  The mean of the 
distribution of means is equal to the population mean 
µ, so we know where the distribution is centred.  To be 
able to trace the smooth bell shaped curve that is the 
normal distribution, we also need to know what the 
standard deviation is.  That is, what would the 
standard deviation of the means be? 
 
To answer this question, we would need to perform 
several studies (say 100), and estimate the standard 
deviation of the means by 
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Sample standard deviation of the mean = 

2
(x - x)
99

∑
 

 

where  x =  sample mean  

 x =  mean of the sample means  
 

This is simply a manipulation of the usual formula for 
the sample standard deviation of observed data. 
 
In the everyday of clinical research, however, we have 
enough trouble gaining funding for one study let alone 
100, so performing several identical studies is 
certainly out of the question.  Fortunately, a result 
exists that allows us to calculate the standard deviation 
of the means. 
 
Note: The term ‘Standard Deviation’ is usually 
reserved for use when discussing the spread of data on 
individuals.  When referring to the mean, we call the 
standard deviation of the means, the standard error 
(SE) of the means. 
 
If we know the standard deviation (σ) of the data that 
the sample was drawn from, and if the sample size is 
of size ‘n’, the SE of the mean is 
 

SE = 
σ
n

 

Thus 

X N
n

~ ( , )µ
σ

 

 

Or, in words: The sample mean has a normal 
distribution.  The mean of these means is equal to the 
population mean (µ), and the standard error (standard 

deviation of the means) is equal to 
σ
n

. 

 
This result can be used to answer questions of the 
following nature: 
 
Polymyalgia rheumatica in (population X) is normally 
distributed with mean (95 mm/hr) and standard 
deviation (20 mm/hr).  A sample of size 15 is to be 
randomly selected and the mean ESR is to be 
calculated.  What is the probability that the sample 
mean will be less than 80 mm/hr ? 
 
It is rarely the case that we know what the population 
standard deviation (σ) is, and usually need to estimate 
it with the following 

s =  (x - x)
n -1

2∑
 

 

where s denotes the sample standard deviation 
 
The SE of the mean can then be estimated by 
 

SE = 
s
n

 

 

When this is the case, the Central Limit Theorem does 
not apply any more.  When the underlying data are 
normally distributed, however, the statistic 
 

*t
x
s n

=
− µ

 

 

has a t distribution.  This distribution is defined by 1 
parameter, called the ‘degrees of freedom’. 
 
Need for the t distribution stems from the fact that we 
have had to estimate the standard deviation, throwing 
extra variability into the problem.  We penalise 
ourselves for this by using the t distribution instead of 
the normal distribution. 
 
In our previous paper (1), we highlighted the point 
that to obtain probabilities for an observation when 
using the normal distribution, we need to know how 
many standard deviations from the mean the 
observation lies.  When looking at means instead of 
observations, we are interested in the number of SE’s 
the sample mean lies from the population mean. t* 
does just that.  Once t* is known, we can then compare 
this to the t distribution to calculate probabilities. 
 
ONE SAMPLE t TEST 
 
In a previous paper (3), the concept of an hypothesis 
was introduced.  The one sample t test is concerned 
with making inference regarding a population mean.  
For example, suppose you were interested in testing 
the hypothesis that the average ESR for polymyalgia 
rheumatica was 95 mm/hr (µ).  To show this, you 
would need to randomly select ‘n’ (say 100) people 
with polymyalgia rheumatica.  From this sample we 

obtain 2 statistics. The sample mean x , and the 
sample standard deviation (s) which will yield the SE 

(
s
n

) 

 

When testing an hypothesis, we always assume the 
hypothesis is correct.  We now want to know what the 

probability of our observed sample mean ( x ) or 
something more extreme occurring is. 
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Figure 6 

 
In mathematical notation, this can be written as 
 

2P( X > x ) 
 

Where X  denotes the random variable (the thing 

which can vary from study to study) and x  denotes 
the actual observation.  The extra factor of ‘2’, is 
needed to perform a 2 sided test (4). 
 
By calculating the number of standard errors the 
sample mean lies from the hypothesised mean (t*), we 

are able to obtain the probability P( X > x ), by 
comparing t* to the appropriate t distribution.  Having 
multiplied this probability by ‘2’, we have then 
calculated the 2 sided p-value (4). 
 
Common practice is to reject the hypothesis when the 
p-value is less than 0.05, and not reject it when the p-
value is greater than 0.05. 
 
The concept of a p-value and its interpretation are 
discussed in (3) and will not be re discussed here. 
 
TWO SAMPLE t TEST 
 
This is more common a scenario than the one sample t 
test. 
 
Usually we want to compare the means of 2 groups.  
For example, the mean of a treatment group and the 
mean of a control group for polymyalgia rheumatica.  
The hypothesis tested here, is the hypothesis stated in 
(3) ie. ‘Nothing Happens’, or the means in the 2 
groups are equal to each other.  If we denote the mean 
of the treatment group by µ1 and the mean of the 
control group by µ2, then the hypothesis that we want 
to test is 
 

µ1 - µ2 = 0 
 

the study design would be to take a random sample of 
n1 people who have treatment, and a random sample 
of n2 people who act as controls, and calculate the 
difference between the sample means by  

1 2x x−  
 

If we assume that the underlying distributions which 
the two samples were taken from are both normally 
distributed, then the distribution of each of the means 
will also be normally distributed as discussed before.  
It can be shown that the difference between 2 normally 
distributed variables will also have a normal 
distribution. 
 
Since our hypothesis is that µ1 - µ2 = 0, we assume that 
the mean of this distribution is zero.  All that is 

required is to find the SE of 
1 2x x− .  This in itself 

can be derived using different assumptions (5), and 
will not be discussed here. 
 
The reader should be able to see that we have 
 

 a sample mean  
1 2x x−  

 an hypothesised mean µ1 - µ2 = 0 
 a standard error 
 
The p-value can then be derived using the same 
method as with the one sample t test.  That is, 
calculate the number of SE’s the sample mean lies 
from the hypothesised mean, and compare this t 
statistic to the appropriate t distribution. 
 
CONCLUSION 
 
t distributions help us decide if a mean is different 
from a known standard value. 
 
When reading the literature it is important to 
understand the meaning of t distributions and how 
they differ from other important distributions. 
 
REFERENCES 
 
1. Ugoni A, Walker BF.  An Introduction to 

Probability Distributions.  COMSIG Review 
1995; 4(1):Pages 16-23. 

2. Dawson-Saunders B., Trapp RG.  Basic and 
Clinical Biostatistics.  Connecticut: Prentice-
Hall, 1990: 84-86. 

3. Ugoni A.  On the Subject of Hypothesis Testing.  
COMSIG Review 1993; 2(2): 45-48. 

4. Zar J. H.  Biostatistical Analysis.  New Jersey: 
New Jersey 1984: 97-101. 

5. Zar J. H.  Biostatistical Analysis.  New Jersey: 
New Jersey 1984: 126-137. 


